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In real world problems, imbalance of data samples poses major challenge for the classification problems
as the data samples of a particular class are dominating. Problems like fault and disease detection
involve imbalance data and hence need attention to avoid the bias towards a particular class. The clas-
sification models like support vector machines (SVM) get biased to majority class samples and hence
results in misclassification of the minority class samples. SVM suffers as no prior information related to
the data is involved in the generation of hyperplanes. Also, local information of the neighbourhood is
ignored in SVM samples and thus treats each sample equally for generating the hyperplanes. However,
the data points may be contaminated and may mislead the generation of hyperplanes. Inspired by the
idea of prior data information and local neighbourhood information, we propose K-nearest neighbour
based weighted reduced universum twin SVM for class imbalance learning (KWRUTSVM-CIL). The
proposed KWRUTSVM-CIL embodies the local neighbourhood information and uses universum data
to balance the classes in class imbalance problems. Local neighbourhood information is incorporated
via weight matrix in the objective function. In proposed KWRUTSVM-CIL model, weight vectors are
used in the corresponding constraints of the objective functions to exploit the interclass information.
The oversampling and undersampling approaches are followed to balance the data in class imbalance
problems. Universum data gives prior information of the data. Twin SVM, universum twin SVM, and
reduced universum twin SVM for class imbalance implement empirical risk minimization principle and
thus may lead to overfitting. However, the proposed KWRUTSVM-CIL model embodies regularization
term to maximize the margin and implement the structural risk minimization principle which is
the marrow of statistical learning and overcomes the issues of overfitting. Experimental results and
the statistical analysis signify that the generalization ability of proposed KWRUTSVM-CIL model is
superior in comparison to other twin SVM based models. As an application, we use the proposed
KWRUTSVM-CIL model for the diagnosis of Alzheimer’s disease and breast cancer disease. The proposed
KWRUTSVM-CIL model showed better generalization performance compared to other twin SVM based
models in biomedical datasets.
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1. Introduction been employed in fuel consumption estimation [8] and wire arc
additive manufacturing [9]. SVM via structural risk minimization
principle leads to better generalization performance. However,
the computational cost of SVM is higher and hence twin support
vector machine (TSVM) [10] was proposed. TSVM generates two
non-parallel hyperplanes by solving two smaller size quadratic
programming problems (QPPs). TSVM generates each hyperplane
proximal to the samples of one class and as far as possible from

Support vector machine (SVM) [1] is the successful algorithm
for the classification problems used across the domains like de-
tection of faults [2], disease detection [3,4], face recognition [5,6]
and internet traffic classification [7]. Moreover, SVMs have also
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the samples of other class. Least squares twin SVM (LSTSVM) [11]
reduced the computation cost of TSVM by solving a pair of linear
system of equations instead of QPPs. Peng [12] introduced v-
twin SVM to improve the sparsity of the TSVM model while
as Wang et al. [13],Yan et al. [ 14] introduced L;-norm based TSVM
to improve the robustness of the TSVM model. To overcome the
effects of outliers and noise, robust L, ;-norm enhanced multi-
weight vector projection SVM [15] and weighted structural twin
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SVM by local and global information [16] have been proposed. To
further improve the generalization performance of the SVM based
models, multi-view learning is exploited [17,18]. For multiclass
problems, weighted linear loss multiple birth SVM [19] has been
proposed.

Weston et al. [20] introduced the concept of universum in
SVM, known as USVM, which incorporates prior data distribution
information for generating the classifiers. However, USVM is com-
putationally expensive, hence, Qi et al. [21] formulated universum
twin SVM (UTSVM) which is an efficient model as it solves QPPs of
smaller size compared to USVM. Both USVM and UTSVM require
external toolbox to solve the QPPs, hence, Xu et al. [22],Richhariya
and Tanveer [23] proposed least squares twin SVM with univer-
sum data (ULSTSVM) which solves a system of linear equations
for generating the classifiers. Sinz et al. [24] analysed the effect
of universum and concluded that selection of universum data is
problem specific. Mostly, random averaging approach is followed
for the generation of universum data [21,24]. USVM and UTSVM
models incorporate universum data to improve the generalization
performance of the models, however, it simultaneously increases
the computation cost [3].

In addition to noise and outliers, the classification models
also suffer in class imbalance problems. Here, the samples of
one class (majority class) outnumber the samples of the other
class (minority class). The imbalance ratio is the ratio of num-
ber of samples of majority class to the samples of minority
class. For classification problems with high imbalance ratio of
the samples, SVM classification models are biased to the ma-
jority class samples and hence, the samples of minority class
are misclassified. In problems like diagnosis of diseases [3,25]
the focus is on the classification of minority class samples. To
deal with such problem, multiple approaches have been fol-
lowed. For creating the balance of classes, fuzzy SVMs for class
imbalance learning [26,27] assigned fuzzy membership weights,
boosting SVM (BSVM) [28] used boosting algorithm, and entropy
based fuzzy SVM (EFSVM) [29] used information entropy of data.
Also, synthetic minority oversampling technique (SMOTE) [30],
random under-sampling approach [31,32], have been proposed
to balance the classes. SVMs use kernel trick to handle the
non-linear data. However, the aforementioned models gener-
ate the weights or synthesize the samples in the feature space
instead of kernel space. To get the weights in kernel space,
weighted kernel based SMOTE SVM (WKS-SVM) [33] generated
the weights in kernel space which improved the generaliza-
tion performance. Minimum variance embedded weighted kernel
extreme learning machine (MVWKELM) and minimum variance-
embedded class-specific kernelized ELM (MVCSKELM) [34] ex-
ploits the variance of the data for the class imbalance problems.
SVM has also been designed for highly imbalanced classification
problems [35]. Robust fuzzy least squares TSVM for class imbal-
ance learning (RFLSTSVM-CIL) [36] used imbalance ratio of the
samples in generating the fuzzy weights which resulted in im-
proved generalization performance. Tanveer et al. [37],Ganaie and
Tanveer [38] proposed general TSVM (Pin-GTSVM) with pinball
loss function to handle the noisy data and large scale pinball loss
TSVM [39] for large scale datasets. Margin maximization in twin
spheres SVM (MMTSSVM) for class imbalance data [40] gener-
ated twin hyperspheres instead of hyperplanes. To minimize the
effect of noise, margin maximization and volume minimization
in hyper-spheres machine with pinball loss [40] and K-nearest
neighbour (KNN)-based margin maximization and volume min-
imization based hyper-sphere machine [41] for class imbalance
problems have been proposed. Twin SVM models have also been
successfully used in regression problems [42-44].

Reduced support vector machine [45] reduced the kernel ma-
trix by randomly choosing the subset of training data to limit
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the number of support vectors. For regression problems, reduced
twin support vector regression [46] has been proposed. Reduced
kernels retain the maximum information [47] and hence, give
competitive performance.

To enhance the generalization ability of a classifier and make
it robust, similarity or local neighbourhood information is ex-
ploited. Half of the information about the data lies in the lo-
cal neighbourhood and is exploited using KNN [48]. Weighted
TSVM uses local similarity information [49] for better general-
ization. KNN based weighted rough v-twin support vector ma-
chine [50], KNN based weighted TSVM [51,52], KNN based struc-
tural TSVM [53] and KNN weighted multiclass least squares
TSVM [54] exploited the local neighbourhood information by
assigning different weights to the samples of each class via KNN
method. Ensemble learning [55] approach has been used in TSVM
based models [56-58]. For detailed review of TSVM, readers are
referred to [59].

The performance of the universum based learning algorithms
is better due to the prior information [20,24]. However, incorpo-
ration of the universum data leads to increase in computational
time. Recently, reduced universum TSVM for class imbalance
learning (RUTSVM-CIL) [60] used universum data efficiently to
balance the samples of the different class. Here, universum data
is incorporated in a manner that it give prior information about
the data without increasing the computational cost of the model.
Moreover, reduced kernel is used to further reduce the complex-
ity of the models. TSVM, UTSVM and RUTSVM-CIL ignore the local
neighbourhood information which leads to the problem that each
sample is effecting the separating hyperplane equally, however,
each sample effects the separating hyperplane differently. TSVM
is not able to use the prior information, however, UTSVM can
incorporate the universum data which improve the generalization
performance of the model at the cost of complexity. TSVM and
UTSVM models may suffer in class imbalance problems due to
over representation of the majority class and under representa-
tion of the minority class. Also, TSVM, UTSVM and RUTSVM-CIL
implements the empirical risk minimization principle which re-
sults in the issues of overfitting. Moreover, matrices appearing in
the dual formulation of TSVM, UTSVM and RUTSVM-CIL are posi-
tive semidefinite. Hence, to overcome the aforementioned issues
of TSVM, UTSVM and RUTSVM-CIL models, we formulate KNN-
based weighted reduced universum TSVM for class imbalance
learning (KWRUTSVM-CIL).

The major highlights of this work are

e To incorporate the local neighbourhood information, K near-
est neighbour-based weights are used in the proposed
KWRUTSVM-CIL.

e Unlike RUTSVM-CIL, UTSVM, TSVM and RFLSTSVM-CIL mod-
els which implement empirical risk minimization principle,
the proposed KWRUTSVM-CIL model implements the struc-
tural risk minimization principle, hence, avoid the issues of
overfitting.

e Similar to RUTSVM-CIL, the proposed KWRUTSVM-CIL model
incorporates prior information about the data (universum
data) to steer the class imbalance problem.

e Wolfe dual of the proposed KWRUTSVM-CIL involves pos-
itive definite matrices, while as the matrices in the Wolfe
dual of RUTSVM-CIL, UTSVM, TSVM and RFLSTSVM-CIL are
positive semidefinite.

e As an application, we use the proposed KWRUTSVM-CIL
model for the diagnosis of Alzheimer’s disease and breast
cancer disease.

The rest of this paper is organized as follows: Section 2 discuss
the existing work, Section 3 gives the formulation of the proposed
model, its computational complexity and its advantages over
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existing models. Section 4 discusses the experimental results.
Finally, the conclusions and potential future research directions
are given in Section 6.

2. Related work

Suppose the data samples of minority class +1 are denoted by
matrix A € R™*" and the class —1's data points are the samples
of majority class given by matrix B € R™*". Also, universum
data samples are given by U. Here, m; and m, are the number
of samples in positive and negative class, respectively and n
represents the dimensions of each sample.

2.1. Class imbalance learning

Class imbalance problems pose a real challenge to the machine
learning algorithms [61]. Here, the number of samples of one class
outnumber the samples of the other class, hence the classification
models get biased towards the samples of majority class. Class
imbalance problems are predominant in medical domain [62],
software defect detection [63], computer vision [64], oil spill
detection [65] and breast cancer classification [66]. The conven-
tional classification algorithms get biased towards the dominant
class of samples and the samples of other class, due to less
representation, get misclassified. Particularly in medical diagnosis
such as Alzheimer’s disease diagnosis [67] the samples of mi-
nority class get misclassified. Hence, the tailored methods for
class imbalance learning are drawing attention from the machine
learning [68,69].

Multiple techniques have been developed for the class im-
balance learning [61,70,71]. Class imbalance learning models are
broadly classified as the data level methods, algorithmic level
methods and the hybrid approaches [61].

2.1.1. Data level methods

To minimize the imbalance among the samples of different
classes, data level methods such as undersampling and over-
sampling [31,61] have been utilized. In undersampling methods,
fraction of samples from the majority class are dropped to get
the balance across the samples of different classes. However,
these methods such as EasyEnsemble and BalanceCascade [31]
leads to loss of information. Oversampling method replicates the
samples of minority class, however, these models pose the risk of
overfitting [72]. To overcome this risk, synthetic minority over-
sampling technique (SMOTE) [30] generates the samples of the
minority class.

2.1.2. Algorithm level methods

Algorithm level methods [35] adapt the structure of the algo-
rithm directly to handle the class imbalance problems. Another
category of algorithm level methods is the cost sensitive meth-
ods [73] which give more penalty for the misclassification of the
minority class such as weighted SVM [74], weighted Lagrangian
twin SVM [75], fuzzy weighted twin SVM [76] and enhanced twin
SVM [77].

2.1.3. Hybrid approaches

Hybrid approaches like EasyEnsemble and BalanceCascade [31]
combine the benefits of the data level methods and the algo-
rithm level methods for handling the imbalance problems. In
EasyEnsemble, random undersampling approach is followed to
generate multiple balanced data subsets from the majority class,
which are used to train the learners and then combine their
outputs. The BalancedCascade learns the models sequentially
wherein the samples of majority class being correctly classified
are removed from further consideration.
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2.2. K Nearest neighbour (KNN) weight generation

KNN method [48] gives the local information of positive and
negative classes. For each data point of +1 class, define
NH,(xy) = {x}'{, if both x}'( and x; are in same class ,0 <i < my},
(1)
NHg(x) = {x}, if X and x, are in different class, 0 < i < m,},
(2)

where NH;(x;) and NHy(x,) represent the m; and m, neighbours
of x; from 41 and —1 classes, respectively. Define the adjacency
matrix of class +1 [52], as follows

, if Xj € NHy(x;) or x; € NHs(x;)

—

M. :: =
Sy {O, otherwise 3)
and
1, if x; € NHy(x;) or x; € NHy(x;
Md,ij — j . d( z) i d( j) (4)
0, otherwise.

When M;; = 1 or Mg; = 1, undirected edge between the two
samples is added in the corresponding graph. For reducing the
sample points, M is redefined as

fo 1 M £,
7710 otherwise.

(5)

2.3. TSVM

TSVM [10] generates two nonparallel hyperplanes for each
class of the binary classification problem. Each plane is proximal
to one class of data points and as far as possible from the data
points of other class.

The separating hyperplanes of TSVM for non-linear case are:

fix0) =KX, Cuy +by and  fio(x) = K(x', C')uy + by, (6)

where C = [A; B] and K(-) is the kernel function which is usually
taken as the Gaussian kernel.
The optimization problems of TSVM are:

. 1
min §||K(A, Chuy + erbq||® + crebé

uy,by.6

s.t. —(K(B,Cuy +exb1)+& > e, & >0 (7)

and

. 1
min 5||K(B, COuz + exby||* + 268,

up,by.&

s.t. K(A, Cuy +e1by + & > ey, & >0, (8)

where ¢; are penalty parameters, e; denote vectors of ones with
appropriate dimensions and &; are slack vectors, fori = 1, 2.

Using the necessary and sufficient Karush-Kuhn-Tucker
(K.K.T.) conditions, the Wolfe dual of (7) and (8) are given as
follows:

1

max eboq — Eaﬁc(H‘H)’]Gton

o1

st. 0<ay1 < (9)
and

t 1 t t —T1pyt

max ey, — -a,H(G'G) 'Hay

o 2

s.it. 0 <oy <o, (]0)

where «; and o, are the Lagrangian multipliers, H =
[K(A,C") e1]and G=[K(B.C") e
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Once we solve (9) and (10), the separating hyperplanes are
given by

[ﬂ = — (H'H) 'Gla, (11)
1

[gz] =(G'G) 'H' ay. (12)
2

As the matrices G'G or H'H may be ill conditioned, hence the
matrices (G'G)™! and (HTH)~! are added small positive number
8 along the diagonal i.e. (G'G+ 61)~! and (HTH + 81)~!, here I is
an identity matrix of appropriate dimensions.

2.4. UTSVM

UTSVM [21] incorporated the universum data into TSVM for-
mulation. Similar to TSVM, UTSVM solves two smaller sized QPPs
to generate the hyperplanes. The optimization problems of non-
linear UTSVM are given as follows

. 1
min §||K(A7 Chuy + erbi|1? + creb€r + cueln

uq,bq1,61.m

s.t. — (K(B, C[)lh +eb))+ &1 >e, £ >0

(K(U, Cuy +eybi)+n1 = (=14 €)ey, 11 =0 (13)
and
1
min = [[K(B, C)uz + esbs||* + 21, + cuelymn
ug.byErmy 2
s.t. (KA, Cuy +ehy)+& >eq, &£>0
— (KU, Cuy + eyby) + 12 = (=14 ey, 12 >0,
(14)
where c;, ¢, are penalty parameters, e;, e, are vectors of ones with
appropriate dimensions, &;, n; are slack variables, for i = 1, 2 and
C =[A; B].
Using the necessary and sufficient K.K.T. conditions, the Wolfe
dual of (13) and (14) are given as follows:

max e - %(aﬁc — BLOXH'H) \(G'ay — 0" 1) + (e — 1)el By
st. 0 <oy <c,
0<pi=c (15)
and
max e — %(a;H — BLOXG'G) (H' ez — 0" B3) + (€ — 1)e', B2
st. 0 <oy <0y,

0<pB <cu (16)

where «; and B; are Lagrangian multipliers, for i = 1,2, H =
[K(A,C") e],G=[K(B,C") e;],and 0= [K(U.C") e,].

Once we solve (15) and (16), the separating hyperplanes are
given by

[l;;] = —(H'H)"'(C'a1 = 0'B1), (17)

[},‘2] =(G'G) '(H'az — 0'By). (18)

As the matrices G'G or H'H may be ill conditioned, hence the
matrices (G'G)"! and (HTH)~! are added small positive number
8 along the diagonal i.e. (GTG+61)~" and (HTH + 81)7!, here I is
appropriate dimension identity matrix.

The new data point x € R" is given class label as

t t
class(x) = arg min w (19)
i=1.2 lluill
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2.5. RUTSVM-CIL

Suppose B* € R™" is a randomly chosen decreased data
sample matrix of the majority class, here r = my. The universum
data matrix is U € R¥*", where d = m, — m;. Also, U* € R&*" be
random subset of U, where g = f%}.

The optimization problem of nonlinear RUTSVM-CIL [71] are:

1
min = [|K(A, C")u; + e1by || + ci€} oot
uy,by.E1,91 2” ( Jur +eibi[|” 4 cre361 + gl/fl

s.t. — (K(B*, Ct)ul + €1b1) + 5;'1 > e, (20)
(K(U*, C*)uq + eghy) + ¥y = (—1+ &)eg,
&1,v1 >0,

and

1
min ~ [K(B, Chuz + exbs||* + 21, + cuelin

up.by.62.92
s.t. (K(A, Cuy + e1hy) + & > ey, (21)
(K(U, Cuz + erby) + ¥ > (1 — €)ey,
&,92 >0,

here eq, e; and e, are vector of ones of appropriate dimensions.
Using the necessary and sufficient K.K.T. conditions, the Wolfe
dual of (20) and (21) are given as follows:

1
max el — 5(aﬁP* — 0" )(S'S) T (P ay — 0% )
ar, U1
+ (e — 1)92111
st.0<oy <q,
0= M1 = Cy (22)

and

1
max eja; — E(aés + u50)P'P) (S 4+ 0" a) + (1 — €)etpaa

ay, 1ty
s.t.0<ay <oy,

0 <pz <cy (23)

where S = [K(A, C"), e1], P* = [K(B*, C'), e1], P = [K(B, C), ],
0* = [K(U* C"),el, 0 = [K(U,C"),e], C = [A;B*]is the
reduced kernel and «;, u; are the Lagrange multipliers, with i =
1, 2.

Once we solve (22) and (23), the optimal hyperplanes are
given as:

[m = —(8'S+ 817 (P ey — 0" puy), (24)

[zi] = (P'P +31)""(S ez + 0" ), (23)

where § is a small positive number.
The new data point x € R" is given class label as
K(xt, Cu; + b;
class(x) = arg min M (26)
=12 I

3. Proposed KNN weighted reduced universum twin SVM for
CIL (KWRUTSVM-CIL)

Motivated by [21,52,71], we propose KNN weighted reduced
universum twin SVM for CIL (KWRUTSVM-CIL). The proposed
KWRUTSVM-CIL considers the local neighbourhood information
and uses universum data to balance the classes in class imbalance
problems. Local neighbourhood information is incorporated via
weight matrix. The weight matrix in the objective function of
the proposed KWRUTSVM-CIL exploits the intraclass informa-
tion and weight vector in the constraints of the corresponding
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objective function exploits the interclass information. The over-
sampling and undersampling approaches are followed to bal-
ance the samples in class imbalance problems. Universum data
gives prior information of the data. Unlike TSVM, universum
TSVM, and reduced universum TSVM for class imbalance, the pro-
posed KWRUTSVM-CIL model incorporates extra regularization
term for margin maximization and to embody the structural risk
minimization principle which is the marrow of statistical learn-
ing. Also, the matrices appearing in the Wolfe dual of proposed
KWRUTSVM-CIL formulation are positive definite.

3.1. Linear KWRUTSVM-CIL

The optimization problem of the proposed KWRUTSVM-CIL
are

min 2unl? + 5+ 510y + ity
+ cieiér + cuep Y
s.t. —Fi(B'uy +eb1)+& > F,, & >0
Hi(U*uy +egb1) +¥1 > (=1+¢e)H,, ¥1>0  (27)

and
min Sl + b2) + 2 [Dy(Bu; + esb,)]1?
up,by.62,92 2 2
+ ca€l& + cuehyn
s.t. B(Auy +eib)+ & > F,,, £ >0
Hy(Uuy + egby) + ¥, = (1 —e)H,, ¥ >0, (28)
where &, ¥; are the slack variables, ¢; and ¢, are the penalty
parameters, for j = 1,2 and i = 1,2,3,4. ey,e,e; and eg
are the vector of ones with appropriate dimensions. Also, D; =
. m .
diag(dy, dy, ..., dy,) and d; = > .7 My, Fi = diag(fi. fo. ...,
fm )y Hi = diag(hy, hy, ..., hy,), F, is a vector of diagonal
elements of Fy, and similarly, H; and H, are defined. In the same
manner, D,, F,, H, and their corresponding vectors F,,, H, are
defined. Here, d = min(my, my).
Taking the Lagrangian of (27), we have

C3 1
L=l +b3) + S IDs(Au + eb)IP + crehés + cugf

— a'(—=Fi(B*uy + e1by) + & — Fy,)
— B'(Hi(U*uy + egh1) + ¥r1 — (=14 &)Hy) — A'& — o'y,
(29)
where «, 8, A and o are the Lagrange multipliers.

Using the necessary and sufficient K.K.T. conditions for (29),
we have

csuq + (D1A)(D1(Auq + e1bq)) + B*tF]t(x — U*[Hgﬂ =0, (30)
csby + (D1e1)'(D1(Auy + e1by)) + e\ Fia — egH; 8 = 0, (31)
cie1—a—A=0, (32)

Cutg —p—0 =0, (33)

o' (—Fi(B*uy + e1by) + & — F,,) =0, (34)

B'(Hi(U*u1 + egb1) + ¥1 — (=14 )Hg) = 0, (35)

A& =0, (36)

oty =0. (37)

Rewriting (30) and (31), we have

u (D;A) u (FiB*)
o]+ (o] (ou1a e [3]) et ]

~[fhere=e (8

Knowledge-Based Systems 245 (2022) 108578
LetS=D;[A e ].T*=F[B* ei]and0* =H;[U* eg] then
we can write (38) as
(c3I +5°S) [Zﬂ +T*a — 0% =0, (39)

or [Z‘:] = —(c3l + S'S) Y(T* o — 0*B). (40)

Using (40) and the above K.K.T conditions, we have the Wolfe
dual of (27) as

1
max Fj o — 5(oﬁT* — BLO*)csl + S'S)"Y(T* o — 0*B)

a.p
+ (e — DH.B
st. 0<a <c,
0<B<c. (41)
Following the similar procedure, the Wolfe dual of (28) is
given as

1
max Fion— =(n'S+6'0)(cal +T'T)"'(S'n + 0'6)
n,

2
+ (1—&)Hip
s.t. 0<n <c,
0<6 <c, (42)
where T = F[A e] and O = H,
[U ed].

Once we solve (41) and (42), the separating hyperplanes are
obtained as follows

[z:] = —(S'S+ )" (T — 0% 8), (43)

[gi] = (T'T + cl)"1(S'y + 0'9). (44)

The class label of a new data sample x € R" is assigned as
follows:
t 4+ b
class(x) = arg min m (45)
=12 ugl

3.2. Non-linear KWRUTSVM-CIL

The optimization problem of the proposed KWRUTSVM-CIL for
non-linear case are

. C: 1

min 2 (lugll? + b3) + 5 [ID1(K(A, Chuy + erby)|?
uy.by..y1 2 2
+ 1€l + cuey ¥

s.t. —F1(K(B*,C[)U1 +€1b])+$1 szl, éj] >0

Hi(K(U*, CYuy + eghy) + Y1y = (—1+¢&)H,, Y1 =0

(46)
and
uz,gl,i;?,m %“(Iluzll2 + b3) + %IIDz(K(B, Cu + exby)|I?
+ €8 + cuelyn
s.t. F(K(A, Cup +ehy)+ & >Fy,, & >0
Hy(K(U, CYuy + egby) + 2 > (1 — e)H,, 2 >0,
(47)

where C = [A; B*] and K(-) is the reduced kernel.
Following the similar procedure as in the linear case, the Wolfe
duals of (46) and (47) are

1
max F o — E(ofT* — BLO*)(csl + S'S) (T o — 0*B)
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Table 1
Dataset details.
Datasets Samples xFeatures IR
abalone9-18 731 x 8 16.4048
aus 690 x 15 1.2476
brwisconsin 683 x 10 1.8577
bupa_or_liver-disorders 345 x 7 1.3793
checkerboard_Data 690 x 15 1.2476
cleve 297 x 14 1.1679
cmc 1473 x 10 1.3418
ecoli-0-1_vs_2-3-5 244 x 8 9.1667
ecoli-0-1_vs_5 240 x 7 11
ecoli-0-1-4-6_vs_5 280 x 7 13
ecoli-0-1-4-7_vs_2-3-5-6 336 x 8 10.5862
ecoli-0-1-4-7_vs_5-6 332 x 7 12.28
ecoli-0-2-3-4_vs_5 202 x 8 9.1
ecoli-0-3-4-6_vs_5 205 x 8 9.25
ecoli-0-3-4-7_vs_5-6 257 x 8 9.28
ecoli-0-4-6_vs_5 203 x 7 9.15
ecoli-0-6-7_vs_3-5 222 x 8 9.0909
ecoli-0-6-7_vs_5 220 x 7 10
ecoli0137vs26 311 x 8 4.7593
ecoli01vs5 240 x 8 11
ecoli2 336 x 8 8.6
ecoli3 336 x 8 8.6
ecoli4 336 x 8 15.8
glass4 214 x 10 15.4615
heart-stat 270 x 14 1.25
iono 351 x 34 1.7857
new-thyroid1 215 x 6 5.1429
pima 768 x 9 1.8657
vehicle1 846 x 19 2.8986
vehicle2 846 x 19 2.8807
votes 435 x 17 1.5893
vowel 988 x 11 9.9778
wpbc 194 x 34 3.2174
yeast-0-2-5-6_vs_3-7-8-9 1004 x 9 9.1414
yeast-0-2-5-7-9_vs_3-6-8 1004 x 9 9.1414
yeast-0-5-6-7-9_vs_4 528 x 9 9.3529
yeast-2_vs_4 514 x 9 9.0784
yeast2vs8 483 x 9 23.15
yeast3 1484 x 9 8.1043
yeast5 1484 x 9 32.7273
+ (¢ = DH,B
st. 0<a<c,0<B<c (48)
and
t 1 t t try\—1¢ct t
maex Fv2n—5(n5+9 O)cal +T'T) ' (S'n+ 0°0)
s
+ (1— e)Hf,,B
st. 0<n<c, 0<6 <y, (49)

where S = D; [K(A,C") e], T* = F[K(B*,C) e], 0% =
H; [K(U*.C") ], T = F[K(AC) e] and O = H,
[K(U.C) eq].

Once we solve (48) and (49), the separating hyperplanes are
obtained as follows:

[;:] = —(8'S+c3l) {(T*a — 0%B), (50)
[Z‘z] = (T'T + )1 (S'ny + 0'6). (51)

The class label of a new data sample x € R" is assigned as
follows:
IK(x', C*)u; + by

class(x) = arg ll‘{l]ll} T (52)
=1 i
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3.3. Computational complexity

Consider a binary classification problem with m number of
samples such that m; samples belong to the positive class and
m, samples belong to the negative class (m = m; + my). Assume
that we have the class imbalance problem with imbalance ratio,
IR = ;2. The time complexity of the TSVM is (IR> + 1)0(m; )’
and RUTSVM-CIL is (IR® + 3.375)0(m;)? [71]. The computational
complexity of proposed KWRUTSVM-CIL involves the assignment
of weights to the samples via KNN graph and solving the QPPs.
Thus, main complexity of the model involves the following two
steps:

1. Weight initialization via KNN graph: Using O(m?log(m))
the weights of the weight matrix D with m points can be
computed.

2. The complexity of optimizing the QPPs of the proposed
formulations is same as that of the RUTSVM-CIL model.

Hence, the complexity of the proposed model is relatively in-
creased compared to RUTSVM-CIL model due to the incorporation
of the local neighbourhood information.

3.4. Analysis of proposed KWRUTSVM-CIL with respect to TSVM,
UTSVM and RUTSVM-CIL models

The advantages of the proposed KWRUTSVM-CIL with respect
to TSVM, UTSVM and RUTSVM-CIL models are given as follows

e TSVM, UTSVM and RUTSVM-CIL minimize empirical risk
which may result in the issues of overfitting. However,
the proposed KWRUTSVM-CIL model minimizes structural
risk which overcomes the issues of overfitting. Also, TSVM,
UTSVM and RUTSVM-CIL assume that data matrices appear-
ing in the formulation are positive definite. However, in
real world scenarios, such assumption may not be valid
which results in the issues of singularity. The matrices in the
proposed KWRUTSVM-CIL are positive definite and hence,
theoretically more stable.

e TSVM, UTSVM and RUTSVM-CIL assume that all the sam-
ples are equally important for generating hyperplanes. How-
ever, such an assumption may not hold in real world sce-
narios. Thus, the proposed KWRUTSVM-CIL model exploit
neighbourhood information via KNN to give the appropriate
weights to the samples which improves the generalization
performance.

4. Experimental results

In classification problems, class imbalance problem poses a
challenge to the classification algorithms. Such kind of problems
have irregularity in the probability distribution of samples corre-
sponding to different classes. These kind of datasets are termed
as imbalance datasets [61]. The classification algorithms suffer in
problems dominated by the samples of a particular class. The ra-
tio of number of majority class samples to the number of minority
class samples is known as imbalance ratio (IR). Mathematically,

__ Count of majority class data points
" Count of minority class data points’

(53)

We analyse the classification performance of TSVM [10],
UTSVM [21], RUTSVM-CIL [71], MVKWELM [34], MVCSKELM [34],
KW-SMOTE-SVM  [33], RFLSTSVM-CIL [36] and proposed
KWRUTSVM-CIL model. All the models are evaluated on datasets
from UCI machine learning repository [78] and KEEL reposi-
tory [79] (see Table 1). We follow 5-fold cross validation and
the average results of different classification models is given in
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Table 2
Classification performance of baseline models and proposed KWRUTSVM-CIL model on real world KEEL datasets with Gaussian kernel.
Datasets TSVM [10] UTSVM [21] RUTSVM-CIL MVKWELM MVCSKELM KW-SMOTE- RFLSTSVM- KWRUTSVM-
[71] [34] [34] SVM CIL CIL
[33] [36]

AUCE£STD AUCZ£STD AUCZSTD AUC£STD AUC+STD AUCE£STD AUCZ£STD AUCZ£STD

F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure,

G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean
abalone9-18 0.79 +£0.03 0.82 +0.06 0.88 +0.06 0.66 + 0.07 0.76 + 0.06 0.87 +0.06 0.85+0.03 0.89 £+ 0.04

0.5,0.52 0.46, 0.5 0.51,0.56 0.18,0.27 0.4,0.43 0.39,0.48 0.42,0.49 0.53,0.58
aus 0.87 £0.04 0.87 £0.02 0.88 +0.06 0.87 +0.03 0.87 £0.02 0.88 +0.04 0.87 £0.04 0.89 £ 0.05

0.86, 0.86 0.86, 0.86 0.87, 0.87 0.86, 0.86 0.86, 0.86 0.87,0.87 0.86, 0.86 0.88,0.88
brwisconsin 0.98 + 0.02 0.98 + 0.02 0.98 £ 0.01 0.97 +0.02 0.98 +0.01 0.97 +£0.02 0.98 +0.01 0.98 £ 0.01

0.97,0.97 0.97,0.97 0.97,0.97 0.96, 0.96 0.96, 0.96 0.96, 0.96 0.97,0.97 0.97,0.97
bupa_or_liver- 0.71+0.05 0.71+0.09 0.69 £ 0.08 0.59+0.04 0.71 + 0.06 0.67 +0.02 0.7 £0.05 0.71 £+ 0.07
disorders

0.67,0.67 0.64, 0.65 0.67,0.68 0.54, 0.54 0.66, 0.66 0.64, 0.64 0.65, 0.65 0.66, 0.66
checkerboard 0.87 £0.04 0.87 £0.04 0.88 +0.06 0.87 £0.03 0.87 £0.02 0.88 £0.04 0.87 £0.04 0.89 £ 0.05

0.86, 0.86 0.86, 0.86 0.87,0.87 0.86, 0.86 0.86, 0.86 0.87,0.87 0.86, 0.86 0.88,0.88
cleve 0.83 +0.06 0.84 +0.05 0.86 £+ 0.04 0.82 +0.09 0.82 +0.04 0.83 +0.06 0.83 +0.08 0.854+0.03

0.82,0.82 0.83,0.83 0.85,0.85 0.81,0.81 0.8,0.8 0.82,0.82 0.81,0.81 0.83,0.84
cmc 0.7 £0.03 0.7 +£0.02 0.69 £ 0.02 0.69 £ 0.04 0.69 £0.03 0.66 +0.01 0.7 £ 0.04 0.7 £0.02

0.63,0.63 0.63,0.63 0.63, 0.64 0.64, 0.64 0.66, 0.66 0.62,0.62 0.64, 0.64 0.64, 0.65
ecoli-0- 0.9+ 0.04 0.93 + 0.06 0.9+0.07 0.87 +0.08 0.89 +0.05 0.85 +0.05 0.92 +0.05 0.92 +0.05
1_vs_2-3-5

0.8,0.81 0.88,0.88 0.63, 0.66 0.61, 0.64 0.71,0.72 0.7,0.71 0.82,0.83 0.8,0.82
ecoli-0-1_vs_5 0.92 +£0.07 0.96 + 0.06 0.94+0.11 09+0.12 0.95+0.07 0.914+0.07 0.96 + 0.06 0.96 £+ 0.05

0.87,0.88 0.84,0.85 0.87,0.88 0.61, 0.64 0.92,0.92 0.78,0.79 0.86, 0.86 0.86, 0.87
ecoli-0-1-4- 0.92 +0.07 0.92 +0.07 0.92+0.12 0.91+0.07 0.94+0.08 0.87 +0.09 0.93 +0.07 0.95 + 0.06
6_vs_5

0.89,0.9 0.89,0.9 0.89,0.89 0.6,0.63 0.85,0.85 0.83,0.84 0.91,0.92 0.76,0.78
ecoli-0-1-4- 0.91+0.08 0.89 +0.02 0.91+£0.06 0.86 £0.12 0.91+£0.08 0.84 +0.09 0.92 + 0.07 0.91+£0.05
7_vs_2-3-5-6

0.83,0.83 0.74,0.75 0.68,0.7 0.6, 0.62 0.85,0.85 0.43,0.5 0.7,0.72 0.77,0.78
ecoli-0-1-4- 0.92 +0.05 0.94 + 0.05 0.93 £ 0.05 0.89 £ 0.05 0.92 £0.07 0.85 +0.03 0.92 +0.05 0.93 £ 0.05
7_vs_5-6

0.86, 0.86 0.75,0.77 0.72,0.74 0.64, 0.66 0.65, 0.68 0.4, 0.48 0.77,0.78 0.73,0.75
ecoli-0-2-3- 0.92+0.11 0.95 +0.06 0.92+0.12 0.9+0.08 0.94+0.11 0.91+0.07 0.95 +0.06 0.96 £ 0.06
4_vs_5

0.85,0.85 0.79,0.8 0.85,0.85 0.65, 0.68 0.84, 0.85 0.81,0.82 0.79,0.8 0.85,0.86
ecoli-0-3-4- 0.92+0.12 0.94+0.12 0.92 +0.05 0.89 +0.06 0.91+0.11 0.89+0.12 0.95 +£0.05 0.96 £ 0.06
6_vs_5

0.86, 0.87 0.89,0.89 0.66, 0.69 0.67,0.69 0.79,0.8 0.8,0.8 0.82,0.83 0.88,0.89
ecoli-0-3-4- 0.93 +£0.05 0.94 + 0.05 0.92 +0.07 0.86 +0.08 0.92 +0.04 0.89 +£0.01 0.92 +0.08 0.93 +0.08
7_vs_5-6

0.85,0.85 0.8,0.81 0.69,0.72 0.64, 0.66 0.69, 0.72 0.82,0.82 0.87,0.88 0.75,0.77
ecoli-0-4- 0.944+0.11 0.95 +0.07 0.93 +0.08 0.89+0.1 0.93 +0.05 0.91+0.11 0.96 + 0.06 0.95 +0.07
6_vs_5

0.85,0.86 0.92,0.92 0.79,0.8 0.68,0.71 0.7,0.74 0.82,0.83 0.9,0.91 0.92,0.92
ecoli-0-6- 0.9+0.16 0.91+0.11 0.91+0.05 0.87 +0.09 0.89+0.09 0.81+0.1 0.924+0.12 0.93 £0.1
7_vs_3-5

0.81,0.84 0.81,0.82 0.76,0.78 0.67, 0.69 0.67,0.7 0.45,0.51 0.72,0.73 0.78,0.81
ecoli-0-6- 0.914+0.11 0.9+ 0.07 0.92 £+ 0.07 0.86 +0.1 0.88 +0.06 0.85+0.11 0.89+0.11 0.92 £+ 0.07
7_vs_5

0.79,0.8 0.75,0.76 0.71,0.74 0.63, 0.65 0.58, 0.63 0.77,0.78 0.82,0.82 0.75,0.77
ecoli0137vs26 0.934+0.03 0.93 +0.06 0.94 £ 0.03 0.89+0.03 0.94 + 0.02 0.88 +0.04 0.94 +0.02 0.94 £ 0.03

0.9,09 0.89,0.89 0.88,0.88 0.74,0.75 0.91,0.91 0.68,0.71 0.86, 0.86 0.89,0.89
ecoli01vs5 1£0.01 1+0 1+0.01 0.98 +0.02 0.99 +0.01 0.99 +£0.01 1+0.01 1+0.01

0.96, 0.96 1,1 0.98, 0.98 0.82,0.84 0.92,0.93 0.94,0.94 0.98,0.98 0.98, 0.98
ecoli2 0.9+ 0.06 0.89 +0.1 0.9+0.03 0.87 £ 0.05 0.91+0.06 0.83+0.04 0.91 4+ 0.05 0.92 £+ 0.03

0.66, 0.68 0.66, 0.69 0.6, 0.65 0.49, 0.56 0.62, 0.66 0.44,0.52 0.7,0.72 0.67,0.7
ecoli3 0.9 +0.06 0.91+0.04 0.9+ 0.03 0.87 £ 0.05 0.91+£0.06 0.83 +0.04 0.91+£0.05 0.92 +0.03

0.66, 0.68 0.7,0.72 0.6, 0.65 0.49, 0.56 0.62, 0.66 0.44,0.52 0.7,0.72 0.67,0.7
ecoli4 0.97 +£0.02 098 +0 0.98 £ 0.01 0.92 +0.01 0.95+0.02 0.91+0.03 0.95 +0.06 0.98 £ 0.01

0.68,0.72 0.77,0.79 0.78,0.8 0.43,0.52 0.59, 0.65 0.43,0.52 0.69, 0.72 0.79, 0.81
glass4 0.96 + 0.07 0.944+0.12 0.96 £+ 0.07 0.91+0.08 0.95 +0.07 0.81+0.11 0.96 + 0.08 0.96 + 0.04

0.91,0.92 0.85,0.85 0.83,0.84 0.53,0.59 0.75,0.77 0.39,0.45 0.88,0.89 0.7,0.74
heart-stat 0.82 +£0.04 0.82 +0.06 0.78 £0.03 0.59+0.03 0.8+0.03 0.84 +0.04 0.8 £0.04 0.82 +0.04

0.8,0.8 0.79,0.79 0.76,0.76 0.55,0.56 0.77,0.78 0.82,0.82 0.77,0.77 0.79,0.8
iono 0.95 +0.04 0.95 4+ 0.03 0.914+0.03 0.84+0.03 0.93 +0.04 0.88 +0.03 0.95 4+ 0.02 0.94 +0.02

0.94,0.94 0.93,0.93 0.89,0.9 0.8,0.81 0.92,0.92 0.86, 0.87 0.94, 0.94 0.91,0.91
new-thyroid1l 1+£0.01 0.99 £ 0.01 1+£0 0.97 £0.02 0.99 £ 0.01 0.9 +0.05 1+£0.01 1+£0

0.99, 0.99 0.95,0.95 1,1 09,09 0.97,0.97 0.75,0.77 0.99,0.99 1,1

(continued on next page)
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Table 2 (continued).

Datasets TSVM [10] UTSVM [21] RUTSVM-CIL MVKWELM MVCSKELM KW-SMOTE- RFLSTSVM- KWRUTSVM-
[71] [34] [34] SVM CIL CIL
[33] [36]

AUCZSTD AUCZ£STD AUCZ£STD AUC£STD AUCLSTD AUCZSTD AUCZ£STD AUCZ£STD

F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure,

G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean
pima 0.72 +0.07 0.74 £ 0.04 0.74 £ 0.05 0.66 £ 0.04 0.72 £0.07 0.75 + 0.02 0.73+£0.04 0.74+£0.04

0.62,0.62 0.66, 0.68 0.67,0.68 0.57,0.57 0.63, 0.64 0.67,0.67 0.66, 0.67 0.67,0.68
vehicle1 0.85 + 0.02 0.84 +0.02 0.85 +0.02 0.61+0.04 0.82 £ 0.04 0.78 +0.02 0.82 +0.03 0.86 £ 0.02

0.72,0.74 0.7,0.72 0.71,0.73 0.44, 0.44 0.67,0.7 0.64, 0.66 0.69,0.71 0.73,0.75
vehicle2 0.99 +0 0.98 £ 0.02 0.98 £0.01 0.9+0.03 0.97 £0.02 0.93 +0.01 0.98 £ 0.01 0.99 £ 0.02

0.98,0.98 0.97,0.97 0.97,0.97 0.82,0.82 0.95,0.95 0.83,0.84 0.97,0.97 0.97,0.97
votes 0.97 + 0.02 0.97 + 0.02 0.97 +0.01 0.94+0.02 0.96 £ 0.02 0.96 + 0.01 0.96 + 0.02 0.97 +0.02

0.95, 0.95 0.96, 0.96 0.96, 0.96 0.93,0.93 0.95, 0.95 0.95, 0.95 0.95, 0.95 0.96, 0.96
vowel 1+0 1+0 0.99 +0.01 0.94 +0.01 1+0 0.89 + 0.04 1+0 1+0

1,1 1,1 0.99, 0.99 0.62, 0.67 1,1 0.81,0.81 1,1 0.98,0.98
wpbc 0.68 +0.09 0.72 + 0.06 0.69 £ 0.05 0.58 £0.12 0.7+0.1 0.72 + 0.08 0.7 £0.09 0.69 £ 0.07

0.51,0.51 0.55,0.57 0.51,0.54 0.39,0.41 0.52, 0.55 0.54,0.57 0.53,0.54 0.52,0.54
yeast-0-2-5- 0.78 + 0.04 0.79+0.04 0.81+0.03 0.78 £0.04 0.81+0.05 0.72+0.11 0.81+0.05 0.82 +0.02
6_vs_3-7-8-9

0.64, 0.64 0.58, 0.59 0.6,0.6 0.43, 0.47 0.59, 0.59 0.38,0.43 0.59, 0.59 0.63, 0.63
yeast-0-2-5- 0.92 + 0.03 0.91+0.03 0.91+0.04 0.85 £ 0.05 0.91+0.02 0.89 + 0.04 0.92 + 0.03 0.92 4+ 0.04
7-9_vs_3-6-8

0.77,0.78 0.8,0.8 0.77,0.78 0.52, 0.56 0.75,0.76 0.62, 0.65 0.73,0.74 0.79,0.79
yeast-0-5-6- 0.81+0.08 0.8 £0.06 0.83 £0.1 0.8 +0.04 0.82 +0.07 0.76 +0.04 0.814+0.05 0.83 £0.11
7-9_vs_4

0.55, 0.56 0.43, 0.49 0.53, 0.56 0.42,0.48 0.46, 0.51 0.41, 0.45 0.52, 0.55 0.56, 0.59
yeast-2_vs_4 0.91 +0.07 0.91 +0.05 0.89 +0.05 0.85+0.06 0.89 +0.07 0.89 +0.06 0.91 +0.06 0.89 +0.04

0.69,0.71 0.76, 0.77 0.71,0.72 0.53,0.57 0.76, 0.76 0.77,0.77 0.74,0.75 0.78,0.79
yeast2vs8 0.82+0.14 0.82+0.14 0.81+0.14 0.77 £0.11 0.79 £0.07 0.77 £0.11 0.82+0.14 0.8+0.14

0.64, 0.65 0.61, 0.62 0.57,0.58 0.68,0.7 0.41,0.44 0.68,0.7 0.72,0.74 0.7,0.73
yeast3 0.92 +0.04 0.92 +0.04 0.93 +0.03 0.85+0.03 0.91+0.03 0.89 + 0.04 0.92 +0.02 0.93 +0.02

0.72,0.74 0.75,0.77 0.72,0.74 0.5,0.56 0.68,0.7 0.75,0.75 0.7,0.72 0.74,0.76
yeast5 0.97 £ 0.01 0.97 £0.03 0.97 £0.01 0.92+£0.01 0.97 £0.01 0.98 + 0.01 0.98 + 0.01 0.98 +0.01

0.49, 0.57 0.61, 0.66 0.54,0.61 0.29, 0.41 0.55, 0.62 0.6, 0.66 0.67,0.71 0.61, 0.66
Average AUC 0.8891 0.8952 0.893 0.8364 0.8854 0.8539 0.895 0.9028
Average Rank 4.29 3.6 3.84 7.51 4.79 6.51 3.49 1.98
Overall [2,0,0] [6,0, 0] [1,0,0] [0, 0, 20] [0, 0, 0] [3,0,17] [5,0,2] [20,0, 0]
Win-Tie-Loss

Here, STD denotes the standard deviation.

'Il:l?slr)rllee:yi post hoc significant difference of classification models based on their performance in real world KEEL datasets with Gaussian kernel.
Significance TSVM [10] UTSVM [21] RUTSVM-CIL [71] MVKWELM [34] MVCSKELM [34] KW-SMOTE-SVM [33] RFLSTSVM-CIL [36]
Proposed Yes No Yes Yes Yes Yes No

Table 4

Nemenyi post hoc significant difference of classification models based on their performance in biomedical datasets with Gaussian kernel.
Significance TSVM [10] UTSVM [21] RUTSVM-CIL [71] MVKWELM [34] MVCSKELM [34] KW-SMOTE-SVM [33] RFLSTSVM-CIL [36]
Proposed Yes No Yes Yes No Yes Yes

Table 5

Pair-Wise Win-tie-loss sign test of classification models based on their performance in real world KEEL datasets with Gaussian kernel.
Significance TSVM [10] UTSVM [21] RUTSVM-CIL [71] MVKWELM [34] MVCSKELM [34] KW-SMOTE-SVM [33] RFLSTSVM-CIL [36]
Proposed Yes Yes Yes Yes Yes Yes Yes

Table 6

Pair-Wise Win-tie-loss sign test of classification models based on their performance in biomedical datasets with Gaussian kernel.
Significance TSVM [10] UTSVM [21] RUTSVM-CIL [71] MVKWELM [34] MVCSKELM [34] KW-SMOTE-SVM [33] RFLSTSVM-CIL [36]
Proposed Yes Yes Yes Yes Yes Yes Yes

. e . 1
Table 2. Here, the data is partitioned randomly into 5 subsets  we use Gaussian kernel K(x, y) = eXP_ZTZHX_y”z- where p is the

out of which one partition is reserved for testing and the rest

.. . . . . ; kernel parameter.
partitions are involved in training the model. This process is The classificati dels invol tuni f "
repeated 5 times and average accuracy of the folds is taken as € classitication models Involve proper tuning ot parameters

the performance measure. All the classification models have been for better performance. We used stam?ard grid search approach
implemented in MATLAB R2017b on a system with configuration ~ to tune the optimal from the following range of parameters:
Intel (R) Core (TM) i7-6700 CPU @ 3.40 GHZ with 8 GB of RAM. co = [0.5,1,1.5,2,2.5], u = [107°,1074,...,10% 10°], c, =
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Fig. 1. The sensitivity evaluation of the proposed KWRUTSVM-CIL classifier based on user specified parameters with Gaussian kernel.

¢ = [107°,1074,...,10% 10°], for i = 1,2, 3, 4. To reduce the
computations, we use ¢; = ¢; = ¢y, €3 = C4.

For generating the universum data, we used random averaging
method [71]. In random averaging method, same number of sam-
ples are randomly chosen from the given classes and the selected
samples are averaged to get the universum data. For generating
the KNN weights [54], we followed procedure given above in
Section 2.2.

The evaluation of the baseline classifiers and the proposed
KWRUTSVM-CIL is performed using area under receiver operat-
ing characteristics (ROC) curve i.e. (AUC) or accuracy and other
measures which are defined as:

TP + 1IN

: (54)
TP + FP + TN + FN

Accuracy, AUC =

P
Sensitivity or Recall = ——, (55)

TP + FN

.. P
Precision = ——, (56)
TP + FP
2 x Precision x Recall

F-measure = (57)

Precision + Recall
G-mean = +/Precision x Recall, (58)

where TP denotes true positive, TN : true negative, FP : false
positive and FN : false negative. The different hyperparameters
of a given classifier generates multiple classifiers which are rep-
resented by a point in ROC curve. The optimal hyperparameters
are the parameters corresponding to the point (a classifier in
ROC curve) in northwest of the AUC curve. The optimal point
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Statistical comparison of classification models with respect to the proposed KWRUTSVM-CIL on real world KEEL datasets with

Gaussian kernel via Wilcoxon signed rank test.

R+ R- p-value Hypothesis (0.05)
TSVM 720 100 0.00001 Rejected
UTSVM 623 197 0.00424 Rejected
RUTSVM-CIL 674.5 66.5 0.00001 Rejected
MVKWELM 820 0 0.00001 Rejected
MVCSKELM 806 14 0.00001 Rejected
KW-SMOTE-SVM 792.5 275 0.00001 Rejected
RFLSTSVM-CIL 588 153 0.00164 Rejected

The p-value is calculated from paired Wilcoxon test.

R+ (R-) present the sum of positive (negative) ranks, respectively.

(classifier) is the classifier corresponding to the optimal hyper-
parameters and the same information is reported in above given
measures.

Alzheimer’s data is obtained from Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database http://adni.loni.usc.edu/. In
2003, ADNI with Michael W. Weiner, MD as the Principal investi-
gator was established. The motive of ADNI is to analyse the onset
of Alzheimer’s disease via Neuroimaging approaches involving
positron emission tomography (PET), magnetic resonance imag-
ing (MRI) and other biological markers. For details, we refer to
www.adni-info.org. We used ADNI baseline dataset [80,81] and
downloaded 817 structural MRI (sMRI) images. For Volume based
morphometry (VolBM) of the images, we used Freesurfer’s recon-
all pipeline (version6.0.1) [82,83]. Out of 817 images, 4 images
failed to process via Freesurfer pipeline. Thus, we use control
normal (CN), mild cognitive impairment (MCI), and Alzheimer’s
disease (AD) subjects with 228,398 and 187 images respectively.

The BreakHis histopathological breast cancer image dataset
[84] contains 1240 images with 400X magnification. The dataset
involves 2 classes: malignant class and benign class. Benign cat-
egory is subdivided into phyllodes tumour (PT), adenosis (ADN),
tubular adenoma (TA) and fibroadenoma (FA) having 115, 106,
130 and 237 images, respectively. Malignant category is sub-
divided into mucinous carcinoma (MC), ductal carcinoma (DC),
papillary carcinoma (PC) and lobular carcinoma (LC) which con-
tains 169, 208, 138 and 137 images, respectively. The images
are converted into grey level images and up to 3 levels of de-
composition of Daubechies-4 (db4) wavelet is applied on each
image [85]. The concatenation of approximation coefficients and
detail coefficients is used as the feature vector. The information
of biomedical data is presented in Table 9.

4.1. Real world datasets

The experimental results of TSVM [10], UTSVM [21], RUTSVM-
CIL [71], MVKWELM [34], MVCSKELM [34], KW-SMOTE-SVM [33],
RFLSTSVM-CIL [36] and proposed KWRUTSVM-CIL with Gaussian
kernel are presented in Table 2.

From Table 2, the average accuracy of TSVM [10], UTSVM [21],
RUTSVM-CIL [71], MVKWELM [34], MVCSKELM [34], KW-SMOTE-
SVM [33], RFLSTSVM-CIL [36] and the proposed KWRUTSVM-CIL
classifiers are 0.8891, 0.8952, 0.893, 0.8364, 0.8854, 0.8539, 0.895
and 0.9028, respectively. The proposed KWRUTSVM-CIL classi-
fier demonstrated superior performance in comparison with the
existing models. According to overall win-tie-loss analysis, the
TSVM model wins in 2 datasets, UTSVM wins in 6 datasets,
RUTSVM-CIL models win in 1 dataset, KW-SMOTE-SVM and
RFLSTSVM-CIL win in 3 and 5 datasets, respectively. The pro-
posed KWRUTSVM-CIL model wins in 20 datasets. Thus, the
proposed KWRUTSVM-CIL model is the successful classifier with
majority of the wins. Since average accuracy may be biased as
higher performance in one dataset may compensate the others,
hence, we rank the classification models on each dataset to
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evaluate them. From Table 2, one can see that the average rank
of TSVM [10], UTSVM [21], RUTSVM-CIL [71], MVKWELM [34],
MVCSKELM |[34], KW-SMOTE-SVM [33], RELSTSVM-CIL [36] and
proposed KWRUTSVM-CIL are 4.29, 3.6, 3.84,7.51, 4.79, 6.51, 3.49,
and 1.98, respectively. Thus, the proposed KWRUTSVM-CIL model
emerged as the best classifier with lowest average rank.

For evaluation of the models via statistical tests, we perform
statistical analysis. We used Friedman test with corresponding
Nemenyi post hoc test for the comparison of the models. Every
classifier in Friedman test is given a rank on a dataset with the
worse performing classifier assigned higher rank and vice versa.
The average of the rank across different datasets corresponding
to a given model is calculated and is known as the average rank
of the classifier. The classifier with smallest average rank is the
best performing model while as the model with highest rank is
the model with lowest performance. Under the null hypothesis,
the average rank of the classification models is equal and hence
show similar performance. Let N number of datasets are used to
evaluate the performance of k number of classification models.
The Friedman statistic follows x? distribution with (k— 1) degrees
of freedom and is given as follows:

) 12N [Z;_ k+1 ]

Xkt 1)

where R; is the average rank of the jth classifier. As XFZ is undesir-
ably conservative and thus a better statistic Fr with F-distribution
(k—1, (k—1)(N—1)) degrees of freedom is given. Mathematically,

(59)

N —1)x?
Fr = (7))(F2 (60)
N(k—1) — x7
After simple calculation with N = 40 and k = 8, we get
X7 = 146.23 and Fr = 42.6327 follows F-distribution with

(7,273) degrees of freedom. For significance level « = 0.05,
the critical values of Fr(7,273) is 2.045. Since, F = 42.6327 >
2.045 hence, null hypothesis gets rejected. Thus, difference is
significant among the given classifiers. To check the significant
difference between the classifiers, Nemenyi post-hoc test is used.
For Nemenyi test, the critical difference (CD) is given by

kx(k+1)
6N '

After simple calculation, with qggs 3.031 the critical dif-
ference is 1.6601. If the average rank of two classifiers differ
at least by the CD then the difference between two classifiers
is significant with the lower rank classifier performing better
than the other classifiers. Tables 3 and 4 gives the significant
difference of the models on KEEL and biomedical datasets, re-
spectively. It is evident that the proposed KWRUTSVM-CIL is
performing significantly better than the existing models (ex-
cept UTSVM and RFLSTSVM-CIL) in KEEL datasets. Fig. 2 gives
the pictorial representation of the significant difference of the
models.

(D = g (61)
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Table 8
Performance comparison of proposed KWRUTSVM-CIL model with different values of parameter K on real world KEEL datasets with Gaussian kernel.

Datasets 2 3 4 5 6 7 8 9 10

AUCZSTD AUCZSTD AUCZSTD AUC£STD AUCLSTD AUCZSTD AUCZSTD AUCZSTD AUCZSTD

F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure,

G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean
abalone9-18 0.82 + 0.05 0.86 + 0.07 0.87 £ 0.08 0.89+0.04 0.89 £ 0.04 0.88 + 0.04 0.88 +0.04 0.87 £ 0.05 0.87 £ 0.05

0.58,0.61 0.58,0.61 0.56, 0.59 0.52,0.57 0.48, 0.54 0.47,0.53 0.48, 0.54 0.46, 0.52 0.45,0.51
aus 0.8 £0.05 0.82 +0.05 0.82 +0.05 0.83 +0.04 0.83 £ 0.04 0.83 +£0.05 0.85 +0.04 0.86 +0.05 0.86 +0.05

0.76,0.77 0.78,0.79 0.79,0.8 0.8,0.81 0.8,0.81 0.81,0.82 0.83,0.83 0.84, 0.84 0.85,0.85
brwisconsin 0.93+0.02 0.94 +0.02 0.95+0.01 0.96 £ 0.01 096+0 0.97 £ 0.01 0.97 £0.01 0.98 £0.01 0.98 £0.01

0.92,0.92 0.93,0.93 0.94, 0.94 0.95, 0.95 0.95,0.95 0.95, 0.95 0.96, 0.96 0.97,0.97 0.97,0.97
bupa_or_liver-  0.65 £ 0.07 0.68 + 0.06 0.68 £+ 0.06 0.69 £+ 0.08 0.69 £ 0.07 0.68 + 0.06 0.69 + 0.06 0.7 +0.06 0.71+£0.06
disorders

0.51,0.54 0.59, 0.6 0.59, 0.6 0.62, 0.62 0.61, 0.62 0.61, 0.61 0.63, 0.64 0.64, 0.64 0.66, 0.66
checkerboard 0.8 +0.05 0.82 + 0.05 0.82 + 0.05 0.83+0.04 0.83+0.04 0.83 + 0.05 0.85 +0.04 0.86 + 0.05 0.86 + 0.05

0.76,0.77 0.78,0.79 0.79,0.8 0.8,0.81 0.8,0.81 0.81,0.82 0.83,0.83 0.84, 0.84 0.85, 0.85
cleve 0.79 + 0.05 0.82+£0.03 0.84+0.03 0.83+£0.04 0.85+£0.03 0.85+0.03 0.85 +0.04 0.85+0.04 0.85+0.03

0.74,0.76 0.79,0.8 0.81,0.82 0.81,0.81 0.83,0.83 0.84,0.84 0.83,0.83 0.83,0.83 0.83,0.84
cmc 0.63 +0.02 0.67+0 0.67 £0.01 0.68 +£0.01 0.68 +£0.01 0.68 + 0.02 0.69+0.01 0.69+0.01 0.69+0.01

0.46, 0.51 0.55, 0.58 0.56, 0.59 0.57,0.6 0.57,0.59 0.58,0.6 0.58,0.61 0.59, 0.61 0.59, 0.61
ecoli-0- 0.88 +0.07 0.9 +0.08 0.9 +0.07 0.9+ 0.08 0.9+ 0.08 0.89 + 0.08 0.89 + 0.08 0.91+£0.06 0.91+£0.06
1_vs_2-3-5

0.75,0.77 0.79, 0.81 0.77,0.78 0.74,0.76 0.73,0.74 0.71,0.72 0.72,0.74 0.75,0.76 0.74,0.76
ecoli-0-1_vs_5 0.94+£0.11 0.97 £ 0.05 0.96 £ 0.05 0.94+0.11 0.91+£0.11 0.9+0.11 0.91+0.11 0.93+£0.11 0.93+£0.11

0.87,0.88 0.89, 0.89 0.86, 0.87 0.82,0.83 0.75,0.76 0.74,0.75 0.75,0.76 0.78,0.8 0.78,0.8
ecoli-0-1-4- 0.93+0.11 0.93+0.11 0.95 + 0.06 0.92+0.11 0.92+0.12 0.91+0.11 0.92+0.11 0.92+0.11 0.92+0.11
6_vs_5

0.74,0.76 0.75,0.77 0.76,0.78 0.68,0.71 0.67,0.7 0.64, 0.67 0.66, 0.69 0.65, 0.68 0.65, 0.68
ecoli-0-1-4- 0.9+ 0.04 0.9+ 0.04 0.94+0.05 0.89 £+ 0.06 0.9+ 0.05 0.89 + 0.07 0.9 +0.07 0.88 £0.1 0.89+0.11
7_vs_2-3-5-6

0.72,0.74 0.69, 0.7 0.71,0.73 0.67, 0.69 0.73,0.74 0.71,0.72 0.77,0.78 0.72,0.73 0.73,0.74
ecoli-0-1-4- 0.92 +0.05 0.93 +0.05 0.93 +0.05 0.93 +0.05 0.93 +0.06 0.93 +0.06 0.93 +0.06 0.91+0.08 0.91+0.07
7_vs_5-6

0.67, 0.69 0.71,0.74 0.72,0.74 0.69,0.71 0.7,0.72 0.71,0.74 0.7,0.72 0.71,0.73 0.69,0.71
ecoli-0-2-3- 0.94+0.11 0.94+0.11 0.99 +0.01 0.96 + 0.06 0.94 +0.07 0.94 +0.07 0.91+0.11 0.94 +0.07 0.91+0.11
4_vs_5

0.85, 0.85 0.85, 0.85 0.89,0.9 0.85, 0.86 0.84,0.84 0.84, 0.84 0.8,0.81 0.84, 0.84 0.79,0.8
ecoli-0-3-4- 0.924+0.11 0.914+0.11 0.96 + 0.06 0.94 +0.07 0.94 +0.07 0.94 4+ 0.07 0.96 + 0.05 0.97 +0.06 0.96 + 0.07
6_vs_5

0.84, 0.85 0.82,0.83 0.88,0.89 0.88,0.88 0.86, 0.87 0.86, 0.87 0.87,0.88 0.91,0.91 0.89, 0.89
ecoli-0-3-4- 0.87 £0.1 0.89 £ 0.07 0.93 £ 0.08 0.88£0.12 0.88 £0.11 0.89+0.11 0.89+£0.11 0.89+£0.1 0.89+£0.1
7_vs_5-6

0.68, 0.69 0.7,0.72 0.74,0.76 0.65, 0.67 0.66, 0.68 0.68,0.7 0.71,0.72 0.7,0.71 0.7,0.71
ecoli-0-4- 0.84+0.11 0.94+0.11 0.95 £ 0.07 0.94+0.08 0.94 +0.08 0.94 + 0.08 0.93 +0.08 0.93 +£0.08 0.93 £ 0.08
6_vs_5

0.76,0.76 0.86, 0.86 0.92,0.92 0.9,0.91 0.87,0.87 0.86, 0.87 0.84, 0.85 0.81,0.82 0.81,0.82
ecoli-0-6- 0.91+0.1 0.89+0.11 0.91+£0.13 0.91+0.12 0.89£0.11 0.84+0.11 0.87 £0.09 0.87 £0.09 0.83 £ 0.08
7_vs_3-5

0.75,0.78 0.71,0.73 0.72,0.74 0.71,0.73 0.68,0.71 0.62, 0.65 0.65, 0.67 0.69,0.71 0.63, 0.65
ecoli-0-6- 0.89 + 0.07 0.9 +£0.07 0.92 +£0.07 0.9 +0.07 0.92 £0.07 0.89 + 0.07 0.91+0.08 0.91+0.07 0.88 £ 0.06
7_vs_5

0.71,0.73 0.73,0.74 0.75,0.77 0.73,0.74 0.71,0.74 0.7,0.72 0.71,0.73 0.69, 0.72 0.65, 0.68
ecoli0137vs26 0.9+ 0.07 0.91+0.06 0.91+0.06 0.94+0.04 0.94+0.04 0.94+0.03 0.94 +0.03 0.94+0.03 0.94+0.03

0.86, 0.86 0.87,0.87 0.87,0.87 0.9,0.9 0.9,0.9 0.89, 0.89 0.89, 0.89 0.89, 0.89 0.88, 0.89
ecoli01vs5 0.97 + 0.05 0.97 £ 0.05 14+0.01 14+0.01 14+0.01 14+0.01 1+0.01 14+0.01 0.99 +0.01

0.95, 0.95 0.95, 0.95 0.98,0.98 0.98,0.98 0.98,0.98 0.96, 0.96 0.96, 0.96 0.96, 0.96 0.94, 0.94
ecoli2 0.85 + 0.02 0.87 £ 0.05 0.89+0.04 0.92+0.03 0.91+0.03 0.91+0.04 0.91+0.03 0.91+0.03 0.91+0.03

0.65, 0.66 0.66, 0.68 0.65, 0.67 0.67,0.7 0.65, 0.69 0.64, 0.68 0.63,0.67 0.63,0.67 0.64, 0.68
ecoli3 0.85 + 0.02 0.87 £ 0.05 0.89+0.04 0.92+0.03 0.91+£0.03 0.91+0.04 0.91+0.03 0.91+0.03 0.91+0.03

0.65, 0.66 0.66, 0.68 0.65, 0.67 0.67,0.7 0.65, 0.69 0.64, 0.68 0.63, 0.67 0.63, 0.67 0.64, 0.68
ecoli4 0.94 +0.07 0.94 +£0.07 0.98 £0.01 0.97 £0.02 0.96 £ 0.02 0.94 +0.02 0.92 +£0.02 0.9 +0.02 0.89 £ 0.02

0.86, 0.87 0.8,0.81 0.79, 0.81 0.69,0.73 0.6, 0.65 0.52,0.59 0.44,0.53 0.39, 0.49 0.36, 0.47
glass4 0.95 + 0.07 0.96 + 0.04 0.95 + 0.06 0.95 +0.06 0.95 + 0.06 0.95 + 0.06 0.95 + 0.06 0.95 + 0.06 0.95 + 0.06

0.83, 0.85 0.7,0.74 0.64, 0.69 0.64, 0.69 0.64, 0.69 0.62, 0.67 0.62, 0.67 0.62, 0.67 0.62, 0.67
heart-stat 0.74 +0.03 0.77 £ 0.02 0.78 £ 0.05 0.8 +0.03 0.81+0.04 0.82 +0.03 0.83+0.04 0.82 +0.05 0.82+0.04

0.67, 0.69 0.72,0.73 0.74,0.75 0.76, 0.77 0.77,0.78 0.8,0.8 0.81, 0.81 0.79,0.79 0.79,0.8
iono 0.91+0.04 0.93 +0.03 0.94+0.03 0.93+£0.03 0.93+£0.03 0.94 +0.03 0.94 +0.02 0.94 +0.02 0.94 +0.02

0.89,0.89 0.91,0.91 0.92,0.92 0.91,0.91 0.91,0.91 0.91,0.91 0.91,0.91 0.91,0.91 0.91,0.91
new-thyroid1 0.8 +0.09 0.94+0.12 0.94 +0.09 1+0 14+0.01 0.99 + 0.01 0.99 +0.01 0.99+0.01 0.98 +£0.02

0.74,0.77 0.87,0.89 0.93,0.94 1,1 0.99, 0.99 0.96, 0.96 0.95, 0.95 0.94, 0.94 0.91,0.92
pima 0.7 £0.03 0.71+£0.02 0.73 £ 0.05 0.71+£0.05 0.7 +0.06 0.66 + 0.04 0.66 + 0.04 0.68 £ 0.05 0.69 £ 0.05

0.58, 0.6 0.63,0.63 0.66, 0.67 0.65, 0.68 0.64, 0.67 0.61, 0.65 0.61, 0.65 0.62, 0.66 0.63, 0.66
vehicle1l 0.77 £ 0.05 0.8 +£0.02 0.82 +£0.02 0.84+0.01 0.85+£0.02 0.85 + 0.03 0.84 +0.02 0.85+0.02 0.85+0.03

0.65, 0.65 0.68, 0.68 0.7,0.71 0.72,0.73 0.73,0.74 0.73,0.74 0.72,0.73 0.72,0.74 0.73,0.74
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MVCSKELM 472 36 UTSVM

enced by the hyperparameters. Fig. 1 gives the parameter sen-

Datasets 2 3 4 5 6 7 8 9 10
AUCESTD AUCLSTD AUCLSTD AUCLSTD AUCESTD AUCESTD AUCESTD AUCLSTD AUCLSTD
F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure,
G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean
vehicle2 0.97 +£0.02 0.97 +0.02 0.97 +0.02 0.97 +0.02 0.97 +0.02 0.97 +£0.02 0.97 +£0.02 0.97 +0.02 0.97 +0.02
0.96, 0.96 0.96, 0.96 0.96, 0.96 0.96, 0.96 0.96, 0.96 0.96, 0.96 0.96, 0.96 0.97,0.97 0.96, 0.97
votes 0.95 +0.01 0.96 + 0.02 0.96 £ 0.03 0.96 £ 0.03 0.96 £ 0.03 0.96 + 0.02 0.96 + 0.02 0.96 £+ 0.02 0.97 £0.02
0.93,0.93 0.95,0.95 0.95, 0.95 0.95,0.95 0.95,0.95 0.95, 0.95 0.95,0.95 0.95, 0.95 0.96, 0.96
vowel 0.99 + 0.01 0.99 +0.01 0.99+0.01 0.99 £+ 0.01 0.99 £+ 0.01 0.99 + 0.01 1+0 1+0 1+0
0.99, 0.99 0.99, 0.99 0.98,0.98 0.99, 0.99 0.98,0.98 0.98,0.98 0.98,0.98 0.98,0.98 0.99, 0.99
wpbc 0.67 £0.1 0.7 £0.08 0.68 £+ 0.07 0.69 £ 0.07 0.69 £+ 0.07 0.7 £0.07 0.69 £ 0.08 0.67 £+ 0.07 0.65 £+ 0.07
0.5,0.51 0.53,0.54 0.51,0.53 0.52,0.54 0.52,0.54 0.53,0.54 0.51,0.53 0.49, 0.5 0.47, 0.49
yeast-0-2-5- 0.68 + 0.04 0.74 £ 0.02 0.77 £ 0.05 0.79+£0.03 0.81£0.02 0.81+0.02 0.81+0.02 0.82 £ 0.02 0.82 +£0.02
6_vs_3-7-8-9
0.5,0.53 0.58,0.6 0.62, 0.63 0.63,0.64 0.65, 0.65 0.64, 0.64 0.62, 0.62 0.64, 0.64 0.63, 0.64
yeast-0-2-5- 0.9+ 0.04 0.9+ 0.04 0.9+ 0.04 0.92 +0.04 0.92 +£0.04 0.92 +0.04 0.92 +0.04 0.91+0.04 0.91+0.04
7-9_vs_3-6-8
0.77,0.78 0.77,0.78 0.78,0.78 0.79,0.79 0.78,0.79 0.78,0.79 0.77,0.78 0.74,0.75 0.73,0.74
yeast-0-5-6- 0.79+0.13 0.82+0.12 0.82+0.1 0.81+0.09 0.83+£0.11 0.82+0.1 0.79 + 0.08 0.78 £ 0.08 0.79 £ 0.09
7-9_vs_4
0.59,0.6 0.58,0.59 0.56, 0.58 0.53, 0.56 0.57,0.59 0.51,0.54 0.47,0.5 0.44,0.48 0.45, 0.49
yeast-2_vs_4 0.88 + 0.05 0.88 +£0.04 0.88 +£0.04 0.88 £0.04 0.89 £0.03 0.88 +0.03 0.89 +0.02 0.88 +£0.03 0.87 £0.04
0.81, 0.81 0.8,0.8 0.78,0.78 0.78,0.79 0.77,0.77 0.75,0.75 0.73,0.73 0.71,0.72 0.71,0.71
yeast2vs8 0.77 £0.16 0.77 £0.16 0.8+0.14 0.77 £0.16 0.77 £0.16 0.77 £0.16 0.77 £0.16 0.77 £0.16 0.77 £0.16
0.65, 0.69 0.65, 0.69 0.7,0.73 0.63, 0.66 0.65, 0.69 0.63, 0.66 0.65, 0.69 0.65, 0.69 0.63, 0.66
yeast3 0.9 +0.02 0.91+0.02 0.9 +0.02 0.91+0.02 0.92 £0.02 0.92 +0.02 0.93+0.02 0.93+0.03 0.93+0.02
0.77,0.77 0.77,0.77 0.75,0.76 0.75,0.76 0.74,0.76 0.75,0.76 0.74,0.76 0.74,0.75 0.73,0.75
yeast5 0.95 4+ 0.03 0.98 +0.01 0.98 +0.01 0.98 +0.01 0.98 +0.01 0.98 +0.01 0.98 +0.01 0.98 +0.01 0.98 +0.01
0.6,0.64 0.6, 0.66 0.59, 0.65 0.62, 0.67 0.61, 0.66 0.6, 0.66 0.61, 0.67 0.6, 0.66 0.6, 0.65
CD =1.660 UTSVM, RUTSVM, MVKWELM, MVCSKELM, KW-SMOTE-SVM and
RFLSTSVM-CIL.
A S A P A A From the above analysis, superiority of the proposed
I 1 .o . . . . .
E KWRUTSM-CIL classifier in comparison with the existing models
is evident.
MVKWELM M 198 KWRUTSVM-CIL . . ..
KW-SMOTE-SVM 651 349 RFLSTSVM-CIL The generalization of the proposed KWRUTSM-CIL is influ-

TSVM 422 384 RUTSVM-CIL

Fig. 2. Comparison of the classifiers based on the Nemenyi test. The classifiers
which are connected are not significantly different while as the disconnected
classifiers have significant difference between them.

Furthermore, we use Win-Tie-Loss sign test to evaluate the
statistical significance of the models. In this test, under null
hypothesis two models are equivalent if each model wins on
approximately N/2 datasets out of the N datasets. At 5% level of
significance, the two models are significantly different if one of
models wins approximately on N/2 + 1.96W/2. Also, if there is
even number of ties between the two models then the number of
ties are evenly distributed among them otherwise we ignore one
and distribute the rest among the given classifiers.

Tables 5 and 6 gives the significant difference between the
classifiers based on the pairwise win-tie-loss sign test on KEEL
and biomedical datasets, respectively. It is evident that the pro-
posed KWRUTSVM-CIL model is significantly superior compared
to the existing models in KEEL and Biomedical datasets.

The nonparametric Wilcoxon signed-rank test [86] is em-
ployed to compare the performance of the given models. This
test calculates d;, that is the difference between the accuracy
of two compared models corresponding to the ith dataset out
of N datasets. The ascending order of absolute differences is
ranked wherein the average ranks are given in tie cases. R +
(R—) represents the sum of positive (negative) ranks, respectively.
The sufficient difference between R+ and R— demonstrate that
the compared models reject the null hypothesis. The null hy-
pothesis is rejected if the p-value for this test is smaller than
0.05. Therefore, one can see from the Table 7 that the proposed
KWRUTSVM-CIL outperforms the compared models, i.e., TWSVM,

sitivity of the proposed KWRUTSM-CIL classifier. Thus, the model
hyperparameters should be selected carefully for the optimal
performance of the proposed KWRUTSM-CIL model.

4.2. Biomedical data

For evaluating the applicability of the classifiers in real world
scenarios, we use Alzheimer’s disease and breast cancer datasets.

Table 9 gives the details of the biomedical data. The per-
formance of the models on biomedical datasets is presented in
Table 10. In PT_vs_PC subjects, TA_vs_LC subjects and ADN_vs_DC
subjects the proposed model showed the average accuracy of
0.68,0.76 and 0.89, respectively which is better in comparison
with the existing classifiers. Thus, the proposed KWRUTSVM-CIL
model shows better or competitive performance compared to the
baseline models. It is evident that the proposed KWRUTSVM-
CIL classifier obtained highest average classification performance
in terms of accuracy. Also, the average rank is lowest i.e. the
proposed model KWRUTSVM-CIL wins in most of the datasets.
Hence, better generalization performance is demonstrated by the
proposed KWRUTSVM-CIL model which shows its applicability in
biomedical domain.

5. Influence of the K nearest neighbours

Here, we investigate the influence of K nearest neighbours on
the performance of the proposed KWRUTSM-CIL classifier. Here,
we varied the parameter K from 2 to 10 with step size 1. Table 8
shows the performance of the model with varying number of K
nearest neighbours. It is clear from the given table that K needs
to be selected carefully for optimal performance.
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Table 9
Biomedical dataset specifications.
Subclasses Sample Size Features
Control Normal (CN) 228 91
Alzheimer’s disease dataset Mild Cognitive Impairment (MCI) 398 91
Alzheimer’s disease (AD) 187 91
Adenosis (ADN) 106 768
Ductal Carcinoma (DC) 208 768
Fibroadenema (FA) 237 768
Breast cancer dataset Mucinous Carcinoma (MC) 169 768
Phyllodes Tumour (PT) 115 768
Tubular Adenoma (TA) 130 768
Lobular Carcinoma (LC) 137 768
Papillary Carcinoma (PC) 138 768
Table 10
Classification accuracy of TSVM, UTSVM, RUTSVM-CIL and proposed KWRUTSVM-CIL models on biomedical datasets with Gaussian kernel.
Datasets TSVM [10] UTSVM [21] RUTSVM-CIL MVKWELM MVCSKELM KW-SMOTE- RFLSTSVM- KWRUTSVM-
[71] [34] [34] SVM CIL CIL
[33] [36]
AUCESTD AUCLSTD AUCLSTD AUCESTD AUCESTD AUCESTD AUCESTD AUCLSTD
F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure, F-Measure,
G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean G-Mean
ADN_vs_DC 0.86 +0.05 0.88 +0.07 0.87 +0.03 0.86 +0.03 0.87 +0.03 0.87 £0.04 0.86 +0.06 0.89 £ 0.02
0.8,0.81 0.83,0.84 0.8,0.81 0.8,0.81 0.8,0.82 0.81,0.82 0.81, 0.82 0.83,0.83
ADN_vs_LC 0.57 £ 0.04 0.62 + 0.08 0.57 £0.07 0.52 £ 0.07 0.57 £ 0.05 0.56 + 0.06 0.56 + 0.05 0.61+0.09
0.53,0.53 0.66, 0.68 0.39, 0.42 0.39,0.4 0.63, 0.67 0.51,0.52 0.5,0.51 0.54, 0.54
ADN_vs_MC 0.63 + 0.05 0.62 +0.03 0.61+0.06 0.58 +£0.08 0.63+0.04 0.6 +0.09 0.62 + 0.06 0.64 +0.04
0.63, 0.67 0.6,0.62 0.58,0.6 0.55, 0.57 0.62, 0.66 0.53,0.53 0.59, 0.61 0.62, 0.66
ADN_vs_PC 0.69 + 0.08 0.68 +£0.03 0.68 £ 0.08 0.49 £ 0.06 0.6 +0.1 0.56 + 0.08 0.68 +0.08 0.73 £ 0.07
0.69,0.71 0.69,0.7 0.7,0.73 0.54, 0.56 0.61,0.62 0.52,0.52 0.68,0.7 0.71,0.71
CN_vs_AD 0.89 + 0.05 0.88 +0.02 0.88 £ 0.04 0.86 £ 0.04 0.88 £0.04 0.87 +0.03 0.89 + 0.05 0.87 £ 0.05
0.88,0.88 0.87,0.87 0.87,0.87 0.84,0.84 0.86, 0.86 0.85, 0.85 0.87,0.88 0.86, 0.86
CN_vs_MCI 0.69 4+ 0.06 0.69 +0.03 0.69 +0.01 0.67 £ 0.01 0.69 + 0.02 0.69 +0.03 0.69 +0.03 0.7 +0.03
0.63, 0.64 0.63, 0.65 0.62, 0.63 0.61,0.62 0.64, 0.66 0.62, 0.63 0.62, 0.63 0.64, 0.66
FA_vs_DC 0.81£0.01 0.82 £0.03 0.8+0.03 0.81+0.02 0.83 +0.01 0.82 +0.02 0.81+0.03 0.82 +£0.02
0.81, 0.81 0.81,0.81 0.8,0.8 0.79,0.79 0.82,0.82 0.82,0.82 0.81,0.81 0.82,0.82
FA_vs_LC 0.64 + 0.06 0.64 + 0.05 0.66 + 0.04 0.62 +0.04 0.6 +0.04 0.55 + 0.05 0.63 + 0.05 0.65 +0.03
0.54, 0.54 0.52,0.52 0.56, 0.56 0.58,0.6 0.52,0.52 0.46, 0.46 0.5,0.51 0.55, 0.55
FA_vs_MC 0.55 +0.02 0.58 +0.08 0.55+0.03 0.58 £ 0.05 0.59 + 0.06 0.51+0.05 0.57 £0.07 0.58 £ 0.07
0.36,0.4 0.48, 0.48 0.39,0.41 0.46, 0.47 0.5,0.5 0.4,0.4 0.48,0.49 0.52,0.52
FA_vs_PC 0.63 + 0.05 0.63+0.04 0.56 + 0.07 0.51+0.08 0.58 £ 0.04 0.58 + 0.04 0.65 + 0.08 0.65 + 0.02
0.54, 0.54 0.54, 0.55 0.47,0.48 0.37,0.37 0.35,0.39 0.4,0.41 0.54, 0.55 0.54, 0.55
MCI_vs_AD 0.68 4+ 0.06 0.68 4+ 0.05 0.69 £+ 0.04 0.69 £+ 0.05 0.66 + 0.05 0.68 £+ 0.05 0.69 + 0.05 0.69 £+ 0.04
0.58, 0.59 0.57,0.57 0.59, 0.6 0.59, 0.6 0.54, 0.55 0.58, 0.59 0.6,0.62 0.59, 0.6
PT_vs_DC 0.85 + 0.04 0.86 + 0.04 0.87 £ 0.06 0.87 £ 0.05 0.88 +0.05 0.88 + 0.04 0.87 £ 0.05 0.88 + 0.05
0.81, 0.81 0.81,0.82 0.82,0.83 0.82,0.82 0.84,0.84 0.84, 0.84 0.82,0.83 0.84, 0.84
PT_vs_MC 0.6 +0.04 0.62 + 0.05 0.58 + 0.08 0.59+0.04 0.61+0.03 0.54 +0.03 0.6 +0.07 0.61+0.07
0.61,0.63 0.62, 0.65 0.42, 0.44 0.59, 0.6 0.61,0.63 0.49,0.5 0.54, 0.55 0.57,0.58
PT_vs_PC 0.65 + 0.04 0.65 £+ 0.03 0.66 £+ 0.08 0.58 £ 0.06 0.61+0.02 0.54 +0.04 0.63 +£0.07 0.68 + 0.05
0.66, 0.67 0.66, 0.67 0.67,0.68 0.63, 0.65 0.63, 0.65 0.53,0.53 0.64, 0.64 0.65, 0.65
TA_vs_DC 0.75 +0.02 0.75 £+ 0.04 0.69 + 0.07 0.73+£0.03 0.75+0.03 0.75 + 0.04 0.75+0.03 0.76 + 0.04
0.69, 0.69 0.69, 0.69 0.56, 0.6 0.65, 0.67 0.68, 0.69 0.69, 0.69 0.67, 0.69 0.71,0.72
TA_vs_LC 0.75 £ 0.06 0.75 + 0.06 0.74 +0.06 0.64 +0.02 0.7 £0.07 0.56 4+ 0.06 0.75 +0.04 0.76 £ 0.04
0.75,0.76 0.75,0.75 0.77,0.78 0.55, 0.57 0.64, 0.65 0.54, 0.54 0.75,0.75 0.77,0.78
TA_vs_MC 0.63 £0.06 0.63 £0.05 0.6 £0.03 0.59 £+ 0.02 0.62 + 0.04 0.57 £ 0.04 0.65 + 0.07 0.64+0.03
0.58, 0.58 0.58, 0.58 0.51,0.52 0.45, 0.47 0.41,0.48 0.5,0.5 0.61,0.61 0.59, 0.59
Average AUC 0.6988 0.7052 0.6877 0.6579 0.6867 0.6547 0.7001 0.716
Average Rank 4.3235 3.4706 5.1176 6.7059 4.1176 6.2353 4.3235 1.7059
Overall [1,0,1] [2,0,0] [1,0,2] [0,0,6] [2,0,1] [0,0,6] [2,0,1] [9,0,0]
Win-Tie-Loss

6. Conclusion

In this paper, we proposed a novel K-nearest neighbour
weighted reduced universum twin support vector machines for
class imbalance learning (KWRUTSVM-CIL). To create a balance in
the classes, the proposed KWRUTSVM-CIL model uses universum
data. Also, the proposed model exploits the local neighbourhood
information via incorporation of weight matrix in its objective
function. To exploit the inter-class information, the weight vector
is incorporated in the constraints of the corresponding objective
functions. Different from TSVM, UTSVM and RUTSVM-CIL, we
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added an extra regularization term in the objective function of
the proposed KWRUTSVM-CIL formulation for maximizing the
margin and ensuring that the matrices in the Wolfe dual of
the proposed KWRUTSVM-CIL formulation are positive definite
and structural risk minimization principle is implemented which
is the marrow of statistical learning. Combination of under-
sampling with oversampling using universum data leads to the
improved results in the class imbalance problems. The efficacy
of the proposed KWRUTSVM-CIL model is demonstrated by the
experimental results and the statistical analysis on benchmark
KEEL and UCI datasets. As an application, we used the proposed
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KWRUTSVM-CIL classifier for the diagnosis of diseases in biomed-
ical domain like Alzheimer’s disease and breast cancer disease.
The proposed model showed highest average accuracy and lowest
rank in comparison with the baseline classifiers in biomedical
datasets. In future, one can explore the selection of universum
data as it impacts the performance of the model.
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